

Tamm plasmon resonance for sensing applications

Baptiste Auguié* <baptiste.auguie@vuw.ac.nz> Axel Bruchhausen, Alejandro Fainstein Centro Atómico Bariloche, Argentina * Victoria University of Wellington, New Zealand

Cecilia Fuertes, Paula Angelomé, Galo Soler Illia Centro Atómico Constituyentes, Buenos Aires

Surface plasmon resonance sensing

What are Tamm plasmons ??

Bragg mirror

Distributed Bragg Reflector

• • •

Distributed Bragg Reflector: optical response

 $\lambda_0 = 600$ nm, 9 pairs $\lambda_0/4$, n₁ = 1.28, n₂=1.72

Tamm mode

 $\lambda_0 = 600$ nm, 9 pairs $\lambda_0/4$, n₁ = 1.28, n₂=1.72, 150 nm Au

- Transmittance / Absorbance ratio depends on DBR and metal thickness
- Large absorbance means strong electric field near the metal layer

Tunability

Porous Bragg mirrors

Adv. Mat. 18, 2397–2402 (2006) Adv. Func. Mat. 17, 1247–1254 (2007) J. Phys. Chem. C 112, 3157–3163 (2008)

Wavelength-selective mirrors

(a) Au-coated DBR

Au 23 nm $TiO_2 100 \text{ nm}$ $SiO_2 82 \text{ nm}$ $TiO_2 102 \text{ nm}$ $SiO_2 79 \text{ nm}$ $TiO_2 98 \text{ nm}$ $SiO_2 82 \text{ nm}$ $TiO_2 104 \text{ nm}$ $SiO_2 72 \text{ nm}$ $TiO_2 115 \text{ nm}$ glass

(b) Au-coated substrate

TiO₂ 68 nm SiO₂ 81 nm TiO₂ 75 nm SiO₂ 81 nm TiO₂ 78 nm SiO₂ 78 nm TiO₂ 80 nm TiO₂ 80 nm Au 29 nm glass

Sensing (proof-of-principle)

Perspectives

- gas sensing
- Raman and fluorescence
- hybrid cavity-Tamm plasmon
- inclusion of metal nanoparticles

References

[*Tamm sensor*] ACS Photonics, (2014) 1(9):775–780 [*Critical coupling*] Journal of Optics, (just accepted, 2014) arXiv:1411.0608

¡Thank you for your attention!

contact: baptiste.auguie@vuw.ac.nz

Icing on the cake

supporting information

Dispersion of the mode (TE and TM)

Comparisons

Sensing

Tunability

Field profile

Resonance condition

Critical coupling

Tunability of critical coupling

Dielectric function

Critical coupling & perfect absorption

Promising refractive-index sensor?

Surface plasmon resonance sensing

doi:10.1038/nrd838