BaptiSfe Auguié

MY GOAL: challenge us to think differently about graphics

If progress is to be made in graphics, we must be prepared to set aside old procedures when better ones are developed, just as is done in other areas of science.
W.S. Cleveland, 1983

Motivation • A NEW mEDIUM

Motivation • A NEW MEDIUM

(SOME ILLUSTRATIONS)

worrydream.com/TenBrighterIdeas/ jasondavies.com/maps/transition/ mbostock.github.io/d3/talk/20111116/\#17

Outline

- A PHILOSOPHY OF GRAPHICS
- The good, the bad, and the ugly
- Tips and guidelines
- A GRAMMAR OF GRAPHICS
- Elements of theory
- Glimpse of the future
- A VISION FOR GRAPHICS
- Aesthetics and impact
- TOC figures, slides, posters

Tools don't matter (but they do)

PART I • A PHILOSOPHY OF GRAPHICS

Clarity:
data-to-ink ratio

GRaph ALL the things?

CONSIDER A TABLE

n	Arbitrary precision		Double precision	
1	$(1.351522998772148$	$+0.002682327826796 i)$	$(1.351522998772154$	$+0.002682327826791 i)$
2	$(0.09475820788633184+0.00656391928400884 i)$	$(0.09475820788633782$	$+0.00656391928400889 i)$	
3	$(3.267511781081814$	$+0.354044762711458 i) \times 10^{-3}$	$(3.267511780908656$	$+0.354044762723604 i) \times 10^{-3}$
4	$(8.234338861126748$	$+1.361708455386841 i) \times 10^{-5}$	$(8.234338230741085$	$+1.361708446137377 i) \times 10^{-5}$
5	$(15.30077682100172$	$+3.20759658015824 i) \times 10^{-7}$	$(15.30004712362165$	$+3.2074636639992 i) \times 10^{-7}$
6	$(23.34600724021963$	$+6.186419274080092 i) \times 10^{-9}$	$(25.42872582340277$	$+5.90596678628629 i) \times 10^{-9}$
7	$(29.40892160067281$	$+9.22544630049269 i) \times 10^{-11}$	$(24.3107199444863$	$-1.13271331394081 i) \times 10^{-8}$
8	$(3.204531139340317$	$+1.186184482330857 i) \times 10^{-12}$	$(177.439991438448$	$-2.0214735003898 i) \times 10^{-7}$
9	$(3.038290261597983$	$+1.287101819776947 i) \times 10^{-14}$	$(67.0727643316326$	$+1.57033685336724 i) \times 10^{-5}$
10	$(2.5674093425467$	$+1.240871523988642 i) \times 10^{-16}$	-0.03959069252015016	$+0.00071876916602068 i$
11	$(1.94474203713492$	$+1.055179886196251 i) \times 10^{-18}$	-10.11371972337842	$-0.13925596567256 i$
12	$(13.38699265450917$	$+8.13464528498008 i) \times 10^{-21}$	-1132.655389072814	$+0.299642890755 i$
13	$(8.417729528036757$	$+5.677389217679542 i) \times 10^{-23}$	$(-86.48807724977711$	$+1.50271433683522 i) \times 10^{3}$
14	$(4.876046808254036$	$+3.644961564953527 i) \times 10^{-25}$	$(-29.88742021522111$	$+6.65835422187729 i) \times 10^{5}$
15	$(2.613375843631903$	$+2.154801883308382 i) \times 10^{-27}$	$(34.54711402938201$	$+8.19472138834448 i) \times 10^{7}$
16	$(1.303141351977849$	$+1.184738044986223 i) \times 10^{-29}$	$(45.78317881557951$	$+9.731545021815603 i) \times 10^{9}$
17	$(6.067251546625191$	$+6.069699524562945 i) \times 10^{-32}$	$(-3.816711620949946$	$+1.082670199384622 i) \times 10^{12}$
18	$(2.647391356803932$	$+2.916878553003213 i) \times 10^{-34}$	$(-154.3422495126499$	$+7.8521375375244 i) \times 10^{13}$
19	$(1.085651390657799$	$+1.317672507647534 i) \times 10^{-36}$	$(-166.490936601337536$	$-1.779710476225576 i) \times 10^{15}$
20	$(4.194570626830792$	$+5.621507702515121 i) \times 10^{-39}$	$(21.346348083272847360-1.199678065337379840 i) \times 10^{18}$	
21	$(1.530005420781641$	$+2.269669591435182 i) \times 10^{-41}$	$(100.285925474474$	$-3.244785438691 i) \times 10^{20}$

h :	$x_{\text {max }}$:	0.01	0.1	1	2	3	4	5	6	7	8	10	12	15	20	25	30	40	50	60	70	80
1.1	N	5	5	7	9	11	11	13	15	17	17	21	23	27	35	41	47	63	77	95	127	111
	N_{θ}	6	6	6	7	7	8	8	9	9	10	15	15	15	20	25	35		40			1200
	error	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10^{-12}	10^{-11}	10^{-9}	10^{-7}	10^{-4}
1.3	N	5	5	9	11	11	13	15	15	19	19	23	27	31	37	45	53	69	93	115		
	N_{θ}	9	9	9	9	9	10	15	15	15	15	15	20	20	25	45	30	50	45	500		
	error	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10^{-12}	10^{-9}	10^{-7}	10^{-3}		
2	N	5	7	11	13	15	15	19	19	21	23	25	27	33	41	49	61	75	103			
	N_{θ}	20	20	20	20	20	20	20	20	25	25	25	25	30	35	45	35	50	45			
	error	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10^{-12}	10^{-11}	10^{-7}	10^{-4}			
4	N	5	7	11	15	17	19	21	23	23	25	29	31	35	45	51	57	59				
	N_{θ}	40	40	40	40	40	7	40	45	45	45	50	50	60	70	70	90	90				
	error	-	-	-	-	-	10^{-3}	-	- -	-	-	-	-	-	10^{-13}	10^{-11}	10^{-9}	10^{-4}				
7	N	5	7	11	15	19	19	19	23	25	27	31	35	37	41	47	47					
	N_{θ}	70	70	70	70	70	70	80	80	80	80	90	90	100	200	130	130					
	error	-	-	-	-	- -	-	-	- -	-	-	-	-	-	10^{-11}	10^{-10}	10^{-6}					
10	N	5	7	13	15	19	19	21	25	27	27	31	33	41	45	43	47					
	N_{θ}	100	100	90	100	100	100	110	110	110	120	120	130	140	180	180	200					
	error	-	-	-	-	-	-	-	-	-	-	-	-	-	10^{-11}	10^{-8}	10^{-6}					
20	N	5	7	13	15	19	21	23	23	27	29	33	37	43	43	49	41					
	N_{θ}	200	200	200	200	200	200	200	220	220	240	260	260	280	300	550	400					
	error	-	-	-	-	- -	-	-	-	-	-	-	-	-	10^{-12}	10^{-8}	10^{-4}					
50	N	5	7	13	17	19	21	23	25	27	29	33	35	39	45	47	45					
	N_{θ}	500	500	500	500	500	500	550	550	550	600	650	800	700	1100	900	1200					
	error	-	-	-	-	- -	-	-	- -	-	-	-	-	10^{-13}	10^{-12}	10^{-9}	10^{-6}					
100	N	5	7	13	17	19	21	23	25	27	27	33	35	47	53	47						
	N_{θ}	1000	1100	1000	1100	1000	1100	1100	1100	1100	1100	1300	1500	1400	1600	2000						
	error	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10^{-9}						

THE GOOD, THE BAD, AND THE UGLY

DYnAmite plot

emdbolker.wikidot.com/blog:dynamite

BARPLOT ALTERNATIVES: DOT PLOT, BOXPLOT

Always include 0?

LETTERS

NATURE PHOTONICS DOI: 10.1038/NPHOTоN.2012.300

Figure $\mathbf{3}$ | NOON state characterization. a, Density matrix ρ (magnitudes only) from quantum state tomography, showing large coherence between |LL) and $|R R\rangle$ components. \mathbf{b}, Measured correlation of the filtered CESPDC pairs (no background subtracted). The absence of modulation at the 2 ns cavity roundtrip time indicates the presence of a single cavity mode.

Pie Charts - LIMITED USE

Sunny side of pyramid

Shady side of pyramid

\square Pacman
\square Not Pacman ${ }^{22}$

Energy released in earthquakes since 2010

All 2010 All 2011
All 2012
All 2013
All 2014
All 2015
Earlier 2016
Nov 142016
ellisp.github.io

Proportion survived

Outline

- A PHILOSOPHY OF GRAPHICS
- The good, the bad, and the ugly
- Tips and guidelines
- A grammar of graphics
- Elements of theory
- Glimpse of the future
- A vISION FOR GRAPHICS
- Aesthetics and impact
- TOC figures, slides, posters

TIP \#1•GRAPHIC FORMATS

- Vector format
.eps, .svg,.pdf graphs, schematies

	1	1	1	1		1	1	1	
0	0.1	0.2	. 3	0.4	0.5	0.6	0.7	0.8	0.9

- RASTER FORMAT
.jpg, .tiff, .png
photos, maps

	1	1	1	1	1	1	1	1	1
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

TIP \#2• IMAGE SIZE: AVOID RESCALING

Columnwidth: 3.18143in, textwidth: 6.50127in
Include the figures without rescaling,

Figure 1: Nunc sed pede. Praesent vitae lectus. Praesent neque justo, vehicula eget, interdum id, facilisis et, nibh. Phasellus at purus et libero lacinia dictum. Fusce aliquet. Nulla eu ante placerat leo semper dictum. Mauris metus. Curabitur lobortis. Curabitur sollicitudin hendrerit nunc.
wis pialeiau peue. vivanims nume nume, moies me ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent

\usepackage\{layouts\}

TIP \#3 • Aspect ratio

Try

- "banking" at 45°
- standard ratios

TIP \#3 • Aspect ratio

https://xkcd.com/1732/

TIP \#4•LESS IS MORE

TIP \#4•LESS IS MORE

$$
\begin{aligned}
& \text { Fake } 3 D \text { is often } \\
& \text { counter productive }
\end{aligned}
$$

TIP \#5•SmALL MULTIPLES

TIP \#6 • CONTEXTUAL ANNOTATIONS

SUMMARY • KEY POINTS

- Show the data 'AS nature intended'
- Maximise data/ink (no chart junk)
- Sort and organise (meaningful order)
- Consider transformations (log, difference, ...)
- Help the reader
- Proximity of things to compare
- Axes aligned to ease comparisons
- Deliberate use of colour and labels

PaRt II • A grammar OF GRAPHICS

- A PHILOSOPHY OF GRAPHICS
- The good, the bad, and the ugly
- Tips and guidelines
- A GRAMMAR OF GRAPHICS
- Elements of theory
- Glimpse of the future
- A vision For graphics
- Aesthetics and impact
- TOC figures, slides, posters

If charts are maps of abstract worlds [...] the guiding principles of graphics usage could be derived from the psychology of perception.

Wilkinson

TAXONOMY OF GRAPHICS

Deviation	Correlation	Ranking	Distribution	Change over Time	Part-to-whole	Magnitude	Spatial	Flow
							8. that small differences in data will be hard to	
	Connected scatterplot 							
							Equalised cartogram	
						$\begin{aligned} & \begin{array}{l} \text { Excellent solution in } \\ \text { some instances - use } \\ \text { only with whole } \\ \text { numbers (do not slice } \\ \text { off an arm to } \\ \text { represent a decimal). } \end{array} \end{aligned}$		
				Connected scatterplot				
Sol								
								41

ANATOMY OF A PLOT

plot title

ANATOMY OF A PLOT • PLOT PANEL

ANATOMY OF A PLOT • THE DATA

ANATOMY OF A PLOT • GUIDES

Anatomy of a plot • annotations

A GRAMMAR OF GRAPHICS - MAPPING DATA

- POSITION
- LENGTH

ANGLE

- AREA
- COLOUR
- SHAPE

- LINE TYPE, SIZE, TIME, ...

EXPRESSIVITY AND LEGIBILITY

POINT N' CLICK

Yeah but, no but, yeah but, no but ! !! yeah but ...I swear *******!!!?!!! ... but yeah _(ツ)_/ Computer SAys No

Ctrl-Z

- GRAMMAR OF GRAPHICS

```
plot(data, map(x, y)) +
    layer(point, map(colour = z)) +
    layer(line, map(linetype = t)) +
    theme(fontsize = 12)
```

plot title

MAPPING DATA TO GLYPHS

$$
\begin{gathered}
\text { plot (data }=d, \\
\text { mapping }=\operatorname{map}(x=\text { age, } \\
y=\text { circumference }))+ \\
\text { layer }(\text { type }=\text { "point", } \\
\text { mapping }=\operatorname{map}(\text { shape }=\text { Tree, } \\
\text { colour }=\text { Tree }))+ \\
\text { layer }(\text { type }=~ " l i n e ", ~ \\
\text { mapping }=\text { map }(\text { colour }=\text { Tree }))
\end{gathered}
$$

Tree age circ.

1	Tree1	1582	214
2	Tree1	118	32
3	Tree2	118	33
4	Tree2	1372	203
5	Tree3	484	49
6	Tree3	1372	174
7	Tree3	1004	125

Graphical explorations

last_plot() +
facet_grid(Tree ~ .) +
theme_publication

SMALL MULTIPLES REVISITED

COORDINATE TRANSFORMATIONS

plot(data, map(x, y)) +
layer(line, map(linetype = t)) + coord_polar(theta = x) +

D.R.Y. PRINCIPLE

Benefits of scripting graphics

- EXPLORE MORE POSSIBILITIES
- Save time
- Try multiple variations
- CONSISTENCY
- Reproducible code \& aesthetics
- Self-documenting analysis

But different representations of the exact same data can lead to different understanding and, more importantly, to different decisions.
R. Kosara

Outline

- A PHILOSOPHY OF GRAPHICS
- The good, the bad, and the ugly
- Tips and guidelines
- A GRAMMAR OF GRAPHICS
- Elements of theory
- Glimpse of the future
- A VISION FOR GRAPHICS
- Aesthetics and impact
- TOC figures, slides, posters

Use colour to explain, never just to decorate. Do not make something pretty for the sake of prettiness or because colour is available.

Jan White

The temptation of the available riches is irresistible Jan White

Choosing colour palettes

wesandersonpalettes.tumblr.com

Why use colour?

- USE COLOUR TO SYMBOLISE

Be logical \& follow conventions

- USE COLOUR TO PRIORITISE INFORMATION

Smaller areas brighter, larger areas lighter

- USE COLOUR TO IDENTIFY A RECURRING THEME

Be consistent

Choosing colour palettes

Note: $\sim \mathbf{8 \%}$ of males, 0.5% of females, are colour blind

COLOUR AND CONTEXT

CLUSTER

$$
\begin{aligned}
& \text { POLARISABILITY } \\
& \text { Alpha }
\end{aligned}
$$

CDA SYSTEM
A

DIPOLE MOMENTS
E

TABLE OF CONTENTS ARTWORK

SChematics: minimal \& annotated

Graphics for presentation slides

PARTICLE ARRAYS

MOLECULES ON COLLOIDS

CHIRAL NANO-STRUCTURE

SHELLS OF INTERACTING DYES

GRAPHICS FOR SLIDES - MINIMALIST

EXPERIMENTS

THEORY

continous shell (Mie theory)
dipoles \&
Mie theory

SLIDES - MINIMALIST

Subtracted-Shifted RS

flat-field-corrected Continuously-Shifted RS

Transition Matrix

$$
\begin{aligned}
& \mathbf{E}_{\text {inc }}=E_{0} \sum_{n, m} a_{n m} \mathbf{M}_{n m}^{(1)}\left(k_{1} \mathbf{r}\right)+b_{n m} \mathbf{N}_{n m}^{(1)}\left(k_{1} \mathbf{r}\right) \\
& \mathbf{E}_{\text {sca }}=E_{0} \sum_{n, m} p_{n m} \mathbf{M}_{n m}^{(3)}\left(k_{1} \mathbf{r}\right)+q_{n m} \mathbf{N}_{n m}^{(3)}\left(k_{1} \mathbf{r}\right)
\end{aligned}
$$

$$
\binom{\mathbf{p}}{\mathbf{q}}=T\binom{\mathbf{a}}{b}
$$

$$
\mathbf{T}=\left(\begin{array}{ll}
\mathbf{T}^{11} & \mathbf{T}^{12} \\
\mathbf{T}^{21} & \mathbf{T}^{22}
\end{array}\right) \begin{aligned}
& \text { electric-electric } \\
& \text { magnetic-electric } \\
& \text { electric-magnetic } \\
& \text { magnetic-magnetic }
\end{aligned}
$$

Tell them to work on a better abstract next time

What are posters for?

DEVIL'S ADVOCATE

- Posters Can be GOOd FOR
- Lab advertisement (appealing, introductory)
- Discussing our research less formally
- Showing the "big picture" - e.g. xkcd.com/980
- A SPECTRUM OF USES
- Interactive discussion vs individual viewing
- Serious vs introductory - consider your audience
- ¿A lesser oral presentation?

 FREDERC FOFESST ABERT HLL SMM BOTTONS LAPRY FSHEURNE m DENS HOFPER

 R -

The world
will never be he same
seen it trough the eyes of
Fonest Gum.
Fonest Gup Hanks ${ }_{\text {is }}$ Forrest Gump

 \because ※

GUIDELINES FOR POSTERS

- Tell a Compelling story
- Focus on main points
- Attract the viewer's attention
- Use few words, lists
- Test for effectiveness
- Posters are a hybrid medium
- Complement with discussion (prepare it)
- Consider other supports (tablet, 3D model, ...)
- Be original, but not distracting (message first)

POSTER TIPS

- Be minimalist
- Use only what's required for your story
- Find a beautiful illustration
- Be consistent and structured
- Facilitate the communication
- Choose meaningful colours and illustrations
- Design with balance, think of negative space
- Be ready to present

POSTER TIPS

- Fonts
- Few styles, consistent
- 24pt minimum
- Appropriate (e.g. Helvetica, not Zaffino or Comic Sans)
- Structure
- Not an abstract: be concise
- Results first: get the attention
- Good flow: reading order must be obvious

Designing nanoparticles for sensing
 Baptiste Auguié (${ }^{\dagger}$) Andy Murray Bill Barnes t:ba208@ex,ac.uk Unversity of Exeter Exeter, Devon, EX4 4QL, UK

Goal:
to optimize the optical detection of biomolecules using metallic nanoparticles

Q defining sensitivity: how small an amount of material can we detect above the noise level

- sensitivity depends on the setup: distinction between intrinsic sensitivity and technical limitations

Ne gold particles are immobiized on a substrate
When the target moleaules bind to the surface, the charge in Iocal rotradive indox is soen in tho opt cal response (scattering, exinction).

Exploiting sub-wavelength localisation of optical fields

Optimizing the particle shape, size, and configuration,

Q evaluate the influence of each parameter on the sensitivity

- appreciate technical constraints (camera sensitivit), size, sources of noise, reproducibility
\rightarrow trade-off for real-life application

A variety of fabrication and characterisation techniques
e-beam lithography (EBL)
scanning electron microscopy (SEM)

- a 10 nm fabrication resolution is easily
achieved using EBL
E. - by changing the particle shape and
size, we une
se - polycrystalline nature is the main limita-
tion, both in terms of reproducibiity ton, both in terms of reproaucioint
and material propertios: surface erought
ness and grain boundaries broaden ness and grain boundaries broader
and fatten the resonance for high as and fatten
pect ratio

Producing large areas

Spectroscopy

Q single particle optical characterisation using dark field spec-
troscopy

0 epi-llumination allows the use of a flow cell to detect changes in the spectral response in different biological environments

Single particle response
Aspect ratio and spectral position

- a gold sphere has a broad resonance (LSPR)
- changing the aspect ratio red-shifts the resonance, where gold behaves more like a Drude metal
- trade off between radiative damping and signal intensity Sensitivity to refractive index
- bulk index change: depends only on resonance position - thin layer: infuence of the near-field extent ("hot spots") bulk index sensititity: Inear relation-
ship with resonance position. [1] Data: nanocylinders (airles),
nanodisks (sources hollow nanoshells (diamonds)

Many particles: collective response
Additional freedom in design
Building upon the knowledge of single particles response, new challenges and opportunities arise from the interaction of a collec tion of particles

- dimers lead to a spilting of the dipolar mode

Q short-range interactions can lead to high field enhancement
9 ordered arrays can exhibit diffractive coupling [3]. We study the influence of particle shape, separation, and refractive index of the environment

Modelling

Several numerical schemes have been used

- Discrete Dipole Approximation, coupled dipole approximation

- 1-matrix

- Mie theory

Q Modifed long-wavelength approximation

T-matrix calculations of the scattering cross-section for gold ellipsoids
coated by a thin laver ($n=1.5$) of increasing thickness (steo 5 nmm) for coated by a thin haver ($n=1.5$) of increasing thickness
three different aspect 5 Snle $)$, for curves are for incident polaisiation along the short axis, colored curve

 dashed line is the result of Mie modeling for spheres of increasing diame ter. lick points are takeli from the literature [2]. for gold skerese and
nanorods (crccles and ellipses resp.). Orange points are taken from our
partides.
Right: gold nanorods SEMs and scattering spectra. The aspect ratio dic-
tates the position of the LSP resonance Particle arrays spectra

Left: effect of varying the pitch on the transmission spectra. The particles
are of constant size and shape. Surrounding medium is homogeneous,

Right: transmission spectra at normal incidence for three gold nanorod
arays (pitch 460 nm). Sizes range from 30×50 to $30 \times 70 \mathrm{~nm}$. A dupliarays array shows a consistent change after deposition of a thin ar aup

Future directions

Investigate ordered and disordered arrays

- adapt to the asymmetric environment (substrate/water)
- effect of particle variability
- study of polarisation conversion

References
Plasmonic Nanoparticles: Factors Controling Retractive Index Sensitinity. PhD thesis. M. Miller, 2007
2. Sonnishen et al. "Drastic Reduction of Plasmon Damping in Gold Nanorods". Phys. Rev. Lett, 88(7):077402, Jan 2002 3.Hick et al. "Controlling plasmon line shapes through diffractive coupling in inear arrays of cylinarical nanoparticles tabricated by electron beam lithography". Nano Lett, 5(6):1065-70, Jun 2005

Attogram

Plasmonic Optical Activity

Baptiste Auguié

Co-workers:

Química Física
Andrés Guerrero-Martínez
Luis M. Liz-Marzán
Química Orgánica
José Lorenzo Alonso-Gómez
M. Magdalena Cid

Motivation
A natural pairing with stereochemistry and biological applications, conjointly with the pursuit of negative refraction, have triggered an intense activity in the design of chiral metamaterials, from microwave frequencies to the visible. In the tructures. In contrast, cocloididal synthesis offers the perspentive of producing
ruly B chiral and isotropic structures en masse, with a versatie and completruly 3D chiral and isotropic struc
mentary manufacturing process.

Experimental Results

Different scales of metallic building block
The coupled-dipole approximation provides an intuit
and encompassing frameworkito desil
and encompassing framework to describe optical
activity arising in dissymmetric (chira) stuctures
Atomic cluster

Absorption bands | Nanoparticle |
| :---: |
| Plasmonic response |

Plasmonic nanostructures from colloidal chemistry can enrich the emerging Rasic

Highly-symmetric shapes such as nanorods do not generally produce optical activity, and an average ensemble of such particles freely moving in solution
is intrinsically achiral. A rapidly expanding number of studies $[1-31$ (and refs. is intrinsicilly achiral. A rapidly expanding number of studies $[1-3]$ (and refs.
therein) have put forward the development of strong optical activity via a chiral conerermation of aggregates ordered onto a suitable template.
cont

Coupled-Dipole Model

Chiral dimer of nanorods

Minimal model of plasmonic optical activity $[2-4]$. Coupling betwe

Exciton-coupling

Exciton-coupling
Original theory of coupled-dipoles, recently revisited in the context of recently revisted in the con hybridisation.

The data reported above were obtained from assemblies of gold nanorods onto
helical fibeses (l]. The difference in extinction for left-handed and right-handed
circularly polarised light, defined as circular dichroism (CD), presents a mirrorcircularly polarised light, definied as circular dichroism (Cl), presents a mirrorimage spectrum for the two fibre enantiomorphs. Modeling suggests such
tical activity results from electromagnetic interaction between nanorods.

Outlook

--matrix modelling, beyond the coupled-dipole approximation (CDA)
Contribution of highe- order modes: influence of scattering/absoption ratio EEIGLIS / Cathodoluminescence mapping of a single chiral cluster CD spectroscopy as a tool to investigate the symmetry ofplasmonic assemblies Large-scale numerical optimisation of optical activity in nanoparticle clusters

References

II. Guerrero-Martinez et al. Angew. Chem. 50 (2011)
[2] B. Auguie etal. J. Phys. Chem. Lett. 2 (2011)
[3] A. Guerreo-Martinez etal. Nano Today 6 (Review, 2011) [13] http://cran..--project.org/web/packages/cda (open-source) Thanks: Javier García de Abajo (CSIC, Madrid)

The intense CD signals coincide with the excitation of localised plasmon reso nances, and offer a promising avenue of research at the interface between nano optics, plasmonics, and sterecochemistry.The characteristic bisisgnated lineshape
of the C spectra is reminiscent of a parent mechanism known as exiton-coupling in organic chemistry.

Radiative Correction for Electromagnetic Scattering

Eric Le Ru, Walter Somerville, Baptiste Auguié
The MacDiarmid Institute for Advanced Materials and Nanotechnology
School of Chemical and Physicicl Sciences
Motivation- With the recent increased interest in the optical proper ties of nano-particles, there has been a strong incentive to develop sim-
ple methods to solve the electromagnetic (EM) scattering problem for subwavelength objects of general shape and composition. The quasi-static approximation is particularly well suited for the rapid and accurate mod-
elling of such small scatterers. However, because this approximation inelling of such small scatterers. However, because this approximation in-
trinsically neglects radiation, it cannot satisfy the conservation of energy. The recurring issue of defining a rigorous self-reaction correction has thus resurfaced in this particular context. To date, this correction has been introduced only heuristically, and only for the simplest cases We propose a formalism in which such radiative corrections (RC) to EM scattering can be justified rigorously and generalized to any oth-

- The Case of a Point Dipole -
- Power extracted by such a dipole from the EM field is $P_{\text {ext }}=1 / 2 \omega \operatorname{lm}\left(\alpha_{0}\right)\left|E_{\text {incl }}\right|^{2}$
- Also the power absorbed, $P_{\text {abss }}$, in the electrostatics approximation
- Energy conservation $P_{\text {ext }}=P_{\text {abs }}+P_{\text {sca }}$ is violated for optical properties

Self-field corrected polarizability

$$
\left(\alpha^{\mathrm{RC}}\right)^{-1}=\alpha_{0}^{-1}-G
$$

- Enforces energy conservation, but G is infinite...
- Common prescription: use the finite, imaginary part

$$
\alpha=\frac{\alpha_{0}}{1-i \frac{k_{1}^{3}}{1} \alpha_{0}}
$$

- T-Matrix for Light Scattering -

Relates field expansions of incident and scattered fields in a basis of vector spherical wavefunctions.

$$
\binom{\mathbf{p}}{\mathbf{q}}=\mathbf{T}\binom{\mathbf{a}}{\mathbf{b}}
$$

With
$\mathbf{E}_{\text {inc }}(\mathbf{r})=E_{0} \sum_{V} a_{\nu} \mathbf{M}_{\nu}^{(1)}\left(k_{1} \mathbf{r}\right)+b_{\nu} \mathbf{N}_{\nu}^{(1)}\left(k_{1} \mathbf{r}\right)$,
$\mathbf{E}_{\text {sca }}(\mathbf{r})=E_{0} \sum_{\nu} p_{\nu} \mathbf{M}_{\nu}^{(3)}\left(k_{1} \mathbf{r}\right)+q_{\nu} \mathbf{N}_{\nu}^{(3)}\left(k_{1} \mathbf{r}\right)$
Link with S-matrix: $\quad \mathbf{S}=\mathbf{I}+2 \mathbf{T}$
Cayleigh transform
We define a reactance matrix, K

$$
\mathbf{K}=i(\mathbf{I}-\mathbf{S})(\mathbf{I}+\mathbf{S})^{-1}
$$

Energy conservatio
$\mathbf{T}+\mathbf{T}^{\dagger}=-2 \mathbf{T}^{\dagger} \mathbf{T} \Leftrightarrow \mathbf{S} \mathbf{S}^{\dagger}=\mathbf{I} \Leftrightarrow \mathbf{K}=\mathbf{K}^{\dagger}$

Artistic inpresgion of self-recection

- Rigorous RC in the T-matrix Framework -- Energy conservation is expressed as $\mathrm{K}=\mathrm{K}^{\text {(}}$ (non-absorbing)

Absorbing particles: $\boldsymbol{K}^{\boldsymbol{K}}$ - \mathbf{K}^{+}is Hermitian positive semi-definite (\mathbf{K} is dissipative) (generalizes $\ln (\mathrm{K}) \geq 0$ for a response function K , to matrices)

Given an (truncated, approximate...) expression for K, we obtain a radiationcorrected T-matrix, automatically satisfying energy conservation,

$$
\mathbf{T}^{-1}=-i \mathbf{K}^{-1}-\mathbf{I}
$$

Example of a point dipole
Using the approximate T -matrix from electrostatics, $K_{d}^{(0)}=-i T_{d}^{(0)}=\frac{k_{1}^{3} \alpha_{0}}{6 \pi \epsilon_{0} \epsilon_{1}}$
We justify

$$
\alpha=\frac{\alpha_{0}}{1-i \frac{k_{1}^{3}}{6 \pi \epsilon_{0} \epsilon_{1}} \alpha_{0}}
$$

Recent examoles scattered in the literature
$\begin{aligned} & \text { General multipole correction } \\ & \text { from Mie theory }[5]\end{aligned} \alpha_{n}=\left[1-\frac{i(n+1) k^{2 n+1}}{n(2 n-1)!(2 n+1)!!} \alpha_{n}\right]^{-1} \alpha_{n}$ $\begin{aligned} & \text { Bianosotropic lossless scatterers [6] } \\ & \text { also [7] with magnetoelectric coupling }\end{aligned} \alpha^{-1}-\left(\alpha^{-1}\right)^{\dagger}=-\frac{i k^{3}}{3 \pi}\left(\begin{array}{cc}\mathbf{1} / \epsilon_{0} & 0 \\ 0 & \mathbf{1} / \mu_{0}\end{array}\right)$

Outlook - Using this formalism, radiative corrections to EM scattering can be ustified rigorously and directly generalized to point or body scatterers, and to
ny multipolar order. Notably, these results trivilly reproduce, and make a con any multipolar order. Notably, these results trivialy reproduce, and make a con-
nection to, several independent results for special cases that were scattered in the recent literature.
emarkably, the use of the K -matrix avoids the appearance of any infinities in the derivation of the radiative corrections, which we believe may have implica tions beyond $E M$ theory

- RefERENCES -
[1] P. de Vries et al, Rev. Mod. Phys. 70, 447 (1998)
[2] A. Wokaun et al, Phys. Rev. Lett. 48,957 (1982)
[3] M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption and [4] R. G. Newton, scattering theory of waves and particles (McGraw-Hill, New York, 1966)
[5] G. Colas des Francs, Int. J. Mol. Sci. 10, 3931 (2009)
[6] P. A. Belov et al, Tech. Phys. Lett. 29,718 (2003)
[7] I. Sersic etal. Phys. Rev. B 83, $245102(2011)$

Baptiste Auguié *
Prof. Bill Barnes
Thin Film Photonics Group
School of Physiss, University of Exeter
Exeter Devon - EX4 4OL- UK School of Physics, University of
Exeter, Devon - EX4 4 (LL-UK

Attogram Sensitivity Project

 mons mhen they are excted opitally. Theses structurs are expected to be even more sensitw to the

in Biosensing

 Interest in blosensing
 To go further

- cifferntal tecintiave harease sinal to nose rato giving wo orders of

Conclusions
SPPs have been proved to provide an efficient technique tor sensing.
 Diffierential SPR ellijsometry
 normalized out tor
Locill
Withed
Mint mary ynferent production tecchniques avelable, and a wide variety of sizas and shapes, particle plasmons give us the opportunity to cary out many experimel
sensitivy is isexpected as a a result of t much smaler sensing volume.

References

 Surface Plasmon Resonan
copted for publication.

Acknowledgements
Engineeing and P Pysical Sciences Fesearch Council (IPSRC)
Dr. Ancy Muray. Dr. lan Hooper and Dr. James Sucking from
(*) <ba208@)ex.ac.uk> http://projects.ex.ac.uk/atto/

Attogram Sensitivity

he Attogram project, in collaboration b find the most sensitive technique to det methods make use of Attenuated Total Re refractive index on the surface of a glass pr
both media. For SPP propagating on planar is typically 200 nm in the dielectric, and about al.

Ps

ength than light in free

CRITICAL COUPLING OF LIGHT to TAMM SURFACE-PLASMONS

Baptiste Auguié, Viviana Villafañe, Axel Bruchhausen, Alejandro Fainstein Centro Atómico Bariloche e Instituto Balseiro, San Carlos de Bariloche, 8400 Río Negro, Argentina
||I|||||||||||||||||||||||||||

yield vanishing reflectivity at the TP resonance, and further discriminate the regime of total
absorption.

Critical coupling

"transparency, $\mathrm{T}=1$,
symmetric resonator
$\left.\left.R=\frac{\left(Q_{\text {diss }}^{-1}-Q_{\text {lakk }}^{-1}+Q_{\text {leak } 2}^{-1}\right)^{2}}{\left(Q_{\text {diss }}^{-1}+Q_{\text {k }}^{2}+Q^{-1}\right.}\right)^{-1}\right)^{2}$ is $\mathrm{R}=0$ (critical coupling) when $Q_{\text {dlss }}^{-1}=Q_{\text {leak }}^{-1}$
» if $Q_{\text {emikz }}^{-1}=0$: complete absorption

The theory of open resonators and critical The theory of open resonators and critical
coupling sheds light on some counter-intuitive features of Tamm modes
A regime of complete absorption can be reached, with optimal field enhancement Applications may include thermal emitters, optical communications, and sensing.

References

[1] Phys Rev B 76(16), 2007 [2] Opt Lett 38(6), 2013
[3] App Phys Lett 100(12), 2012
[4] Rev Mod Phys 80(4), 2008

0\% (critical coupling), and optical energy is redistributed in transmission and absorption [4].

In this work, we describe the conditions that

CSRS
 - Continuously-Shifted Raman Spectroscopy
 Needles in a haystack: recovering tiny signals in bright-lit CCD detectors

Baptiste Auguié, Antoine Reigue, Eric Le Ru, Pablo Etchegoin
The MacDiarmid Institute for Nanotechnology
School of Chemical and Physical Sciences
Victoria University, Wellington, New Zealand

In many important applications, excitation of a scopic tools. The general issue we seek to addres dye near an absorption line conjointly produces is how to retrieve comparatively small features in intense fluorescence that overwhelms the Raman peaks [1]. This practical difficulty is commonly regarded as an obstacle for conventional spectro-

If a flat-field correction scheme can be devised to eliminate the fixed-structure contribution from the CCD counts [1,2], the acquisition of multiple spectra will regain photon-limited statistics,
is how to retrieve comparatively small features in
a large background using a standard spectrometer equipped with a CCD detector.

Beating the average - The signal-to-noise ratio that limits the detection level of Raman peaks in the fluorescence background can be improved by averaging many spectra. However, this procedure rapidly meets a major obstacle [1,2], a fixedstructure noise that is insensitive to the photon counts, limiting detectable Raman signals to Ra-man-to-fluorescence ratios below 10^{-3}.
whereby the relative rms noise, and therefore the detectable Raman- to-fluorescence ratio, can reach $\varepsilon \sim 10^{-5}$.

- Methodology -

Using a standard CCD-based spectrometer, we present a practical method that enables routine resonant Raman measurements of dyes with high

Experimental setup - Schematic representation of the triple-subtractive spectrometer (T64000, Horiba Jobin-Yvon), and the 90° scattering configuration used in our experiments. A Glan-Thompson polariser is used at the entrance of the spectrometer, the incident linear polarisation is selected by a $\lambda / 2$-waveplate.
In a typical experiment, multiple spectra are ac quired for ~ 50 positions of the gratings, each totalling $\sim 10^{4}$ counts at the central wavelength.
quantum yield. With multiple shifts of the diffraction gratings the pixel-dependent noise structure is captured and used as a flat-field correction.

CSRS flat-field correction - Peak-retrieval meth-
odology on simulated data. (a) 11 shifts of $5 \mathrm{~cm}^{-1}$ each. (b) Fixed-structure noise after removal of a 4th-order polynomial. A black arrow indicates the position ofthe Raman peak. (c) Same as in (a), plot-
ted against CCD pixels. The black curve is the average of all spectra (flat-field). (d) Recovered spectra after flat-field correction. (e) Average spectrum from (d), plotted against wavenumbers. (f) Second background subtraction and original Lorentzian.

Conclusions

References \& further reading

- William Cleveland • The Elements of Graphing Data
- Edward Tufte • The visual display of quantitative information
- Jan White • Graphic design for the electronic age
- H. Wainer • How to Display Data Badly

Additional links

- https://github.com/kbroman/Talk_Graphs
- http://www.perceptualedge.com/examples.php
- http://colinpurrington.com/2012/example-of-bad-scientific-poster/
- http://tools.medialab.sciences-po.fr/iwanthue/
- Aspect ratio: http://vis.berkeley.edu/papers/banking/
- http://earthobservatory.nasa.gov/blogs/elegantfigures/ 2013/08/06/subtleties-of-color-part-2-of-6/

SugGESTED SOFTWARE

- Plots
- Python, R (static)
- D3, plot.ly (interactive)
- Tableau (expensive)
- SChematics \& LAYOUT
- Inkscape (open-source)
- Adobe Illustrator, Indesign (expensive)

