SHINING FROM ALL SIDES: ORIENTATION-AVERAGED OPTICAL PROPERTIES OF NANOPARTICLE ASSEMBLIES

> Atefeh Fazel-Najafabadi, Baptiste Auguié Victoria University of Wellington, New Zealand

NANO-OPTICS.AC.NZ/TERMS

T.E.R.M.S. (FORTRAN PROGRAM)

10 nm

EXPLORING CHIRALITY AT THE NANOSCALE

GIANT CIRCULAR DICHROISM WITH PLASMONIC ANTENNAS

LIGHT SCATTERING BY COLLECTIONS OF PARTICLES

¿HOW MANY DIRECTIONS OF INCIDENCE?

FAR-FIELD

Local degree of optical chirality $~~\mathscr{C}\propto\Im({f E}^*\cdot{f B})$

Phys. Rev. B 103, 115405 (2021)

Local degree of optical chirality $~~\mathscr{C}\propto\Im({f E}^*\cdot{f B})$

- NON-TRIVIAL SPATIAL DEPENDENCE
- ► INTERFERENCE BETWEEN E & B
- ANGLE-AVERAGING IMPORTANT
 IN RELATION TO EXPERIMENTS

Orientation averaging of optical chirality near nanoparticles and aggregates Phys. Rev. B 103, 115405 (2021)

LOCAL DEGREE OF OPTICAL CHIRALITY $~~\mathscr{C}\propto\Im({f E}^*\cdot{f B})$

$$\langle \mathscr{C} \rangle = 2\pi k \varepsilon_0 E_0^2 \Re \left(A_0 + B_0 + C_0 + D_0 \right)$$

with,

For R polarisation:

$$\begin{split} &A_0^{(\mathrm{R})} = -1/4\pi \\ &B_0^{(\mathrm{R})} = \mathrm{Tr}\left(\sum_{j=1}^N \sum_{l=1}^N \widetilde{\mathbf{Z}}_{R}^{\dagger}(k\mathbf{r}_l) \left[\mathbf{Z}_{L}(k\mathbf{r}_j) T_{LR}^{(j,l)} - \mathbf{Z}_{R}(k\mathbf{r}_j) T_{RR}^{(j,l)} \right] \right) \\ &C_0^{(\mathrm{R})} = \mathrm{Tr}\left(\sum_{j=1}^N \sum_{l=1}^N \left[-T_{LR}^{\dagger(j,l)} \mathbf{Z}_{L}^{\dagger}(k\mathbf{r}_j) - T_{RR}^{\dagger(j,l)} \mathbf{Z}_{R}^{\dagger}(k\mathbf{r}_j) \right] \widetilde{\mathbf{Z}}_{R}(k\mathbf{r}_l) \right) \\ &D_0^{(\mathrm{R})} = \mathrm{Tr}\left(\sum_{j=1}^N \sum_{l=1}^N \sum_{i=1}^N \sum_{k=1}^N J_{RR}^{(k,l)} \left(T_{LR}^{\dagger(j,l)} \mathbf{Z}_{L}^{\dagger}(k\mathbf{r}_j) + T_{RR}^{\dagger(j,l)} \mathbf{Z}_{R}^{\dagger}(k\mathbf{r}_j) \right) \left(\mathbf{Z}_{L}(k\mathbf{r}_i) T_{LR}^{(i,k)} - \mathbf{Z}_{R}(k\mathbf{r}_i) T_{RR}^{(i,k)} \right) \right). \end{split}$$

- NANO-OPTICS, MANY SAMPLES IN SOLUTION
- SIMULATIONS: FEM, FDTD, DDA, ETC.
- OFTEN ASSUMED 3 DIRECTIONS OF INCIDENCE ENOUGH
- ► T-MATRIX: ANALYTICAL ORIENTATION-AVERAGING
 - BUT IS IT ALWAYS BETTER?
- ► FAR-FIELD VS NEAR-FIELD
- AVERAGE VS CIRCULAR DICHROISM
- RULE OF THUMB?

ORIENTATION AVERAGING

SUPERPOSITION T-MATRIX METHOD

- EXPAND FIELDS IN SPHERICAL WAVES (MULTIPOLES)
- EXCITING FIELD = INCIDENT + SCATTERED
- LINEAR SYSTEM FOR N PARTICLES

SPHERICAL CUBATURE

SPHERICAL CUBATURE METHODS

Optimal cubature on the sphere and other orientation averaging schemes A. Penttila, K. Lumme JQSRT 112 (2011) 1741–1746

Efficient numerical orientation averaging of light scattering properties with a quasi-Monte-Carlo method Y. Okada JQSRT 109 (2008) 1719–1742

"LARGE" CLUSTER: HELIX OF NANORODS

ANGULAR PATTERN: CROSS-SECTIONS & CIRCULAR DICHROISM

normalised dichroism

HOW MANY ANGLES? SPHERICAL HARMONIC DECOMPOSITION

https://www.chebfun.org/examples/sphere/SphericalHarmonics.html

NANOROD HELIX: LOCAL DEGREE OF CHIRALITY

The MacDiarmid Institute

for Advanced Materials and Nanotechnology

DODD-WALLS CENTRE for Photonic and Quantum Technologies

THANKS

Atefeh Fazel Najafabadi **Dmitri Schebarchov** Eric Le Ru

SUPPLEMENTARY SLIDES

RAYLEIGH'S HYPOTHESIS

HOW MANY ANGLES ARE NEEDED? - RECIPROCITY;

EXAMPLE: LOCAL ABSORPTION IN AU@PT NANO-TRIMERS

NANOROD HELIX: CIRCULAR DICHROISM

NUMERICAL QUADRATURE

NUMERICAL QUADRATURE $\int_{a}^{b} f(x) dx \approx (b-a) \sum w_i f(x_i)$

SPHERICAL HARMONIC (WHY L=35, M=27)

 $e^{27i\varphi}\sin^{27}(\theta)\left(180297\cos^{8}(\theta) - 73164\cos^{6}(\theta) + 8190\cos^{4}(\theta) - 252\cos^{2}(\theta) + 1)\right)$

NEAR-FIELD AND RECIPROCITY

- NEAR-FIELD <-> FAR-FIELD RADIATION PATTERN OF A DIPOLE EMITTER
- DIPOLE SOURCE: COUPLES TO HIGH-ORDER MODES
- HIGH MULTIPOLE ORDER -> MANY LOBES IN THE RADIATION PATTERN

Casper Beentjes, "Quadrature on a spherical surface." Technical Report (2015)

SPHERICAL CUBATURE: FAR-FIELD CONVERGENCE

SPHERICAL CUBATURE: FAR-FIELD CONVERGENCE

SPHERICAL CUBATURE: FAR-FIELD CONVERGENCE

SPHERICAL CUBATURE: NEAR-FIELD CONVERGENCE

SPHERICAL CUBATURE: NEAR-FIELD CONVERGENCE

DIFFERENTIAL CROSS-SECTIONS – WHAT IS THE PATTERN?

GEOMETRY OPTIMISATION – FROM DIMER TO HELIX (?)

DIFFERENTIAL CROSS-SECTIONS – WHAT IS THE PATTERN?

