MODELLING LIGHT ABSORPTION IN HYBRID CORE-SATELLITE METAL NANOSTRUCTURES

M. HERRAN¹, A. SOUSA-CASTILLO^{1,2}, C. TANG³, E. CORTÉS¹, **B. AUGUIÉ**^{3*}

¹ Nanoinstitute Munich, Ludwig-Maximilians-Universitat, Germany

² Centro de Investigaciones Biomédicas, Universidade de Vigo, Spain

³ School of Chemical & Physical Sciences, Victoria University of Wellington, Aotearoa NZ

* baptiste.auguie@vuw.ac.nz - https://nano-optics.ac.nz

PLASMONIC ANTENNA + CATALYST HYBRIDS

- resonant antenna effect \Rightarrow strong absorption
- hot carriers (electrons/holes) ⇒ chemical reaction at catalyst surfaces

AU@PD PHOTOCATALYSTS

S. Lee, H. Hwang, W. Lee, D. Schebarchov, Y. Wy, J. Grand, B. Auguié, D. Han Wi, E. Cortés and S. Woo Han. ACS Energy Lett. 5, 12, 3881–3890 (2020)

T.E.R.M.S. (SUPERPOSITION T-MATRIX)

nano-optics.ac.nz/terms

10 nm

SUPERPOSITION T-MATRIX METHOD

- expand fields in **spherical waves** (multipoles)
- exciting field = incident + scattered
- linear system for N particles

LOCAL ABSORPTION IN AU@PT NANO-TRIMERS

NEW QUESTION: HOW TO COMBINE AU & PD?

Antenna-Shell

Antenna-Satellites cluster

SUB-QUESTION: HOW DO WE MODEL THAT 1?

M. Herran, A. Sousa-Castillo, C. Fan, S. Lee, Wei Xie, M. Döblinger, B. Auguié and E. Cortés · *Adv. Func. Mat.* 32, 2203418 (2022)

MODELLING AU-PD CORE-SATELLITE STRUCTURES

MOLECULES NEAR A NANOPARTICLE: COUPLED-DIPOLE MODEL

COUPLED DIPOLES AROUND A NANOSPHERE

$$\mathbf{E}_{i} = \mathbf{E}_{i}^{\mathsf{INC}} + \mathbf{E}_{i}^{\mathsf{SPH}} + \sum_{j \neq i} \mathbb{G}_{ij} \mathbb{Q}_{j} \mathbf{E}_{j} + \sum_{\forall j} \mathbb{S}_{ij} \mathbb{Q}_{j} \mathbf{E}_{j}$$
$$\mathbb{A}\mathbf{E} = \mathbf{E}^{\mathsf{INC}} + \mathbf{E}^{\mathsf{SPH}}$$

Di

p_j

- Sphere-mediated coupling S_{ij}
- Self-reaction ("image" dipole) S_{ii}
- Additional excitation from sphere-scattered field ESPH

VALIDATION: FIXED INCIDENCE, SINGLE SATELLITE

MODEL #4: ANISOTROPIC EFFECTIVE MEDIUM

$$\mathbf{\alpha} = a^3 \frac{\varepsilon - \varepsilon_m}{\varepsilon + 2\varepsilon_m} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\varepsilon_{xy} = \varepsilon_m + \frac{L_m^2 \frac{c_d \alpha}{\varepsilon_0}}{1 - \frac{\alpha}{8\pi\varepsilon_0} \frac{L_m^2}{\varepsilon_m} \rho^{3/2} (\xi_0 - \beta_m \xi_I)} \frac{1}{1 - \frac{\alpha}{8\pi\varepsilon_0} \frac{L_m^2}{\varepsilon_m} \rho^{3/2} (\xi_0 - \beta_m \xi_I)}{\frac{L_m^2}{\varepsilon_m^2} \frac{c_d \alpha}{\varepsilon_0}}$$

C. Tang, B. Auguié and E. Le Ru · Phys. Rev. B 103, 085436 (2021) ····· Phys. Rev. A 104, 033502 (2021) ····· J. Phys. Chem. C, 126, 24 (2022)

COMPARISON OF SIMULATION METHODS

Superposition T-matrix

Boundary element method

Generalised coupled-dipole

Effective medium + Mie

COMPARISON: ANISOTROPIC MIE VS TERMS (BENCHMARK)

EFFECT OF GAP DISTANCE

EFFECT OF SATELLITE CONCENTRATION

STRENGTHS AND WEAKNESSES 👍 👌 👎 🤞

METHOD	ACCURACY	TIME	SCALING	DETAILED INFO
TERMS (T-matrix)	~	×	×	~
SCUFF (surface int.)	~	×	~	~
GCDM (coupled dip.)	•	*	~	*
Mie	~		~	×

Partial absorption in core-shell satellites

1 satellite, Rcore=30nm, gap=1nm, Rsat=2.5nm

partial_core partial_shell total

INFERRING DIMERS FROM ABSORPTION SPECTRA

Interface-Dependent Selectivity in Plasmon-Driven Chemical Reactions – A. Stefancu, J. Gargiulo, G. Laufersky, B. Auguié, V. Chiş, E. Le Ru, M. Liu, N. Leopold and E. Cortés · ACS Nano just accepted (2023)