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The extended boundary condition method, also called the null-field method, provides a semianalytic solution to the
problem of electromagnetic scattering by a particle by constructing a transition matrix (T-matrix) that links the scat-
tered field to the incident field. This approach requires the computation of specific integrals over the particle surface,
which are typically evaluated numerically. We introduce here a new set of simplified expressions for these integrals in
the commonly studied case of axisymmetric particles. Simplifications are obtained using the differentiation properties
of the radial functions (spherical Bessel) and angular functions (associated Legendre functions) and integrations by
parts. The resulting simplified expressions not only lead to faster computations, but also reduce the risks of loss of
precision and provide a simpler framework for further analytical work. © 2011 Optical Society of America
OCIS codes: 290.0290, 290.5825, 290.5850.

The extended boundary condition method (EBCM),
also called the null-field method, is arguably one of the
most elegant and efficient methods to rigorously solve
problems of electromagnetic scattering by particles of
arbitrary size [1–6]. It can be viewed as a generalization
of Mie theory [5] (which applies only to spheres), to the
case of particles of arbitrary shape. Since its introduction
by Waterman more than 40 years ago [7], it has been
successfully applied to a variety of electromagnetic
problems. A large part of the work has focused on the
far-field properties of homogeneous dielectric particles
of intermediate size (typically between λ and 20λ, where
λ is the wavelength) and with symmetry of revolution
[5,8]. However, the applicability of the EBCM has been
shown to be much wider, including for example nonax-
isymmetric scatterers [9,10], scattering by metallic nano-
particles [11–14], and calculations of surface fields
[11,13,14]. A variant of the method is also widely used
in the context of acoustic scattering [15]. Extensions
have moreover been proposed, for example, to model
nonspherical multilayered (e.g., core-shell) particles
[16], collections of particles [17], or high aspect ratio par-
ticles using multiple discrete sources [18]. Recently, the
problem of calculating the near-field within this frame-
work has also been addressed [19]. The EBCM method
can also be used as the basis for further analytical inves-
tigations, for example, to formally derive Debye series for
arbitrary-shaped particles [20]. Despite these successes,
the implementation of the EBCM remains numerically
challenging [21], especially for large aspect ratio parti-
cles. For example, it has been shown that quadruple
precision arithmetic is necessary in some cases [22]. In
practice, most of the computing time is spent calculating
a large number of surface integrals involving spherical
Bessel functions and spherical harmonics, which are
used to compute the elements of the T -matrix. All scat-
tering characteristics (such as the electromagnetic field
everywhere in space) can then be derived. In this Letter,
we show that the differentiation properties of the sphe-
rical Bessel functions and associated Legendre functions,
together with integration by parts, result in drastic
simplifications in these integrals. We thereby obtain a

new set of simplified integral expressions that will speed
up any numerical implementation of the method. These
expressions are also more suited to further analytical
work using the EBCM formalism.

We only give here a brief outline of the principle of the
EBCM, using the notations and conventions of
Mishchenko et al. (see [5] for further details) with minor
modifications for clarity of presentation. Within the T -
matrix formulation, the electromagnetic field solutions
are expanded in a basis of vector spherical harmonics
in a similar fashion as for Mie theory. The expansion
coefficients for the scattered field can be represented
as vectors ðpν; qνÞ, where the index ν ¼ ðm;nÞ and jmj ≤
n combines the total (n) and projected (m) angular mo-
mentum indices. These coefficients are linearly related to
those of the incident field ðaν; bνÞ by the T -matrix as
p
q

� �
¼ T

a
b

� �
, where T is an infinite square matrix.

Most electromagnetic modeling methods should in
principle be able to derive the T -matrix (with appropriate
truncation), but the EBCM is the only one that provides
a semianalytical solution for arbitrary shaped particles.
Within this approach, the T -matrix is obtained as a
matrix product T ¼ −RgQQ−1, where the matrix Q
expresses the null-field condition relating the incident
and internal fields, while RgQ describes the formation
of the scattered field from the internal field. The matrix
elements of RgQ and Q are formally similar and involve
integrals of products of vector spherical harmonics
over the particle surface. They differ only in the type
of spherical Bessel function used: regular for RgQ
and Hankel of the first type for Q. We will focus in the
following on Q, but the results are equally valid for
RgQ by interchanging the spherical Hankel functions
with their regular counterparts. Q can be expressed as
a block matrix

Q ¼ Q11 Q12

Q21 Q22

� �
¼ −ik21

sJ21 þ J12 sJ11 þ J22

sJ22 þ J11 sJ12 þ J21

� �
;

ð1Þ
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where s ¼ n2=n1 is the relative refractive index of the
particle and k1 ¼ 2πn1=λ is the wave vector in the embed-
ding medium. The matrix elements of the J-matrices are
the surface integrals of interest in this work. In the case
of axisymmetric particles, the double integration simpli-
fies to a single integral and the surface integrals are in
addition decoupled for different m values, i.e., Jij

mnm0k ¼
0 if m ≠ m0. For a given m, they can then be expressed in
concise form as

isk21J
11
nk

AnAk

¼
Z π

0
dθ sin θξnψk½πnτk þ τnπk�; ð2Þ

isk21J
22
nk

AnAk

¼
Z π

0
dθ sin θ

�
ξ0nψ 0

k½πnτk þ τnπk�

þ
�
nðnþ 1Þξnψ 0

k þ
kðkþ 1Þ

s
ξ0nψk

�
xθ
x2

πndk
�
;

ð3Þ
sk21J

12
nk

AnAk

¼
Z π

0
dθ sin θψk

�
ξ0n½πnπk þ τnτk�

þ xθ
x2

nðnþ 1Þξndnτk
�
; ð4Þ

−sk21J
21
nk

AnAk

¼
Z π

0
dθ sin θξn

�
ψ 0
k½πnπk þ τnτk�

þ xθ
sx2

kðkþ 1Þψkτndk
�
; ð5Þ

where xðθÞ ¼ k1rðθÞ is the angular dependent size
parameter (rðθÞ defines the axisymmetric particle geo-
metry in spherical coordinates), xθ ≡ dx=dθ, and
An ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ=ð2nðnþ 1ÞÞp

. We have, moreover, used
the shorthand notations

ξn ≡ ξnðxðθÞÞ and ξ0n ≡ ξ0nðxðθÞÞ;
ψn ≡ ψnðsxðθÞÞ and ψ 0

n ≡ ψ 0
nðsxðθÞÞ; ð6Þ

πn ≡ πmnðθÞ; τn ≡ τmnðθÞ; and dn ≡ dn0mðθÞ; ð7Þ

where the angular functions πmn, τmn, and dn0m are de-
fined as in [5]. These integral expressions are essentially
identical to those given by Mishchenko et al. [5], except
for the use of the Riccati–Bessel functions instead of the
spherical Bessel for simplicity, namely, ψnðxÞ ¼ xjnðxÞ
and ξnðxÞ ¼ xh

ð1Þ
n ðxÞ.

In order to simplify these expressions, we have used
the following properties of the angular functions:

½πnτk þ τnπk� sin θ ¼ mðdndkÞ0; ð8Þ

mdnðθ ¼ 0Þ ¼ mdnðθ ¼ πÞ ¼ 0; ð9Þ

½πnπk þ τnτk� sin θ ¼ ðτkdn sin θÞ0
þ kðkþ 1Þdndk sin θ; ð10Þ

½πnπk þ τnτk� sin θ ¼ ðτndk sin θÞ0
þ nðnþ 1Þdndk sin θ: ð11Þ

Moreover, for the radial functions we have

ξ00nðxÞ ¼
�
nðnþ 1Þ

x2
− 1

�
ξnðxÞ; ð12Þ

and similarly by replacing ξ by ψ and x by sx. From this,
we also deduce

½nðnþ 1Þs2 − kðkþ 1Þ�xθξnψk

¼ d
dθ ½kðkþ 1Þξ0nψk − nðnþ 1Þsξnψ 0

k�
þ ½nðnþ 1Þ − kðkþ 1Þ�sxθξ0nψ 0

k: ð13Þ

All the preceding relations are easily derived from
standard properties of these functions [23].

Focusing first on J11 [Eq. (2)], one can show using
Eq. (8), integrating by parts, and using Eq. (9) to remove
the nonintegral term, that its matrix elements can be
expressed as

isk21J
11
nk

AnAk

¼
�
−K2

nk − sK1
nk

	
; ð14Þ

where

K1
nk ¼

Z π

0
dθmdndkxθξnψ 0

k; ð15Þ

K2
nk ¼

Z π

0
dθmdndkxθξ0nψk: ð16Þ

Similarly for J22, using Eq. (8) on the first part of Eq. (3),
integrating by parts, and using Eqs. (9) and (12), drastic
simplifications occur and we obtain

isk21J
22
nk

AnAk

¼ ðsK2
nk þ K1

nkÞ: ð17Þ

Combining Eqs. (14) and (17), we therefore obtain re-
markably simpler expressions for Q12 in term of K1 only
and Q21 in terms of K2 only, explicitly:

Q12
nk ¼ AnAk

s2 − 1
s

K1
nk; ð18Þ

Q21
nk ¼ AnAk

1 − s2

s
K2

nk: ð19Þ

Such dramatic simplifications were not found in the
case of J12 and J21, but we can nevertheless obtain alter-
native expressions by substituting Eq. (10) in Eqs. (4) and
(11) in Eq. (5), and integrating by parts to obtain after
simplification

sk21J
21
nk

AnAk

¼ ð−sL1
nk þ L3

nkÞ; ð20Þ
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sk21J
12
nk

AnAk

¼ ðL2
nk − L4

nkÞ; ð21Þ

where

L1
nk ¼

Z π

0
dθ sin θxθτndkξnψk; ð22Þ

L2
nk ¼

Z π

0
dθ sin θxθdnτkξnψk; ð23Þ

L3
nk ¼

Z π

0
dθ sin θdkψ 0

k½xθτnξ0n − nðnþ 1Þdnξn�; ð24Þ

L4
nk ¼

Z π

0
dθ sin θdnξ0n½sxθτkψ 0

k − kðkþ 1Þdkψk�: ð25Þ

Using Eqs. (10), (11), and (13) and integration by parts,
we moreover obtain for off-diagonal terms (n ≠ k)

sL3
nk − L4

nk ¼
s2nðnþ 1Þ − kðkþ 1Þ
nðnþ 1Þ − kðkþ 1Þ ½L1

nk − L2
nk�: ð26Þ

Combining these results, we obtain a simpler expression
for the off-diagonal elements of Q11 and Q22:

Q11
nk ¼

iAnAkðs2 − 1Þ=s
nðnþ 1Þ − kðkþ 1Þ ½nðnþ 1ÞL2

nk − kðkþ 1ÞL1
nk�;

ð27Þ

Q22
nk ¼ iAnAkðs2 − 1Þ=s

�
L3
nk þ

snðnþ 1ÞðL2
nk − L1

nkÞ
nðnþ 1Þ − kðkþ 1Þ

�
:

ð28Þ
Using Eqs. (18), (19), (27), and (28), we can therefore

obtain the Q-matrix (except its diagonal) by computing
the integrals of only five matrices: K1, K2, L1, L2, and
L3. We note that the expected vanishing of these matrix
elements for s ¼ 1 is much more obvious in the new ex-
pressions than in the original ones. Moreover, these five
new integral expressions can all be cast in the separable
form

R
f nðθÞgkðθÞdθ, which can dramatically speed up

numerical computations (compared to an expression likeR
f n;kðθÞdθ). A similar approach with the original expres-

sion of the J matrices would require the computation of 12
such integrals in separable form. In addition to the gain in
computation speed and simplicity, the use of simplified ex-
pressions dramatically reduces the risks of catastrophic
cancellations when subtracting integrals that are very
close in value but not equal. For example, the computation
of Q12 from J11 and J22 requires the addition of six inte-
grals in separable form. The derivation of Eq. (18) expli-
citly shows that many of these terms cancel each other,
potentially creating catastrophic loss of precision. For a
cylinder with parameters n2 ¼ 0:09þ 4i (silver) in water
(n1 ¼ 1:33), radius 20 nm and height 80 nm, and an
incident wavelength of 633 nm, results from both the
double-precision code of Mishchenko et al. [5] and our ex-
pressions were compared to arbitrary precision results.
Agreement to within an order of magnitude for Q12,
m ¼ 1, was found up to nmax ¼ 35 for the original ex-
pressions, while for our expressions this was extended

to nmax ¼ 43. Finally, for the diagonal elements of the
Q-matrix, one may also use Eqs. (20) and (21), but there
is no real simplification compared to the original expres-
sions [Eqs. (4) and (5)].

In conclusion, we have introduced a new set of simpli-
fied integral expressions to compute the surface integrals
within the EBCM framework applied to bodies of revolu-
tion. These expressions are likely to simplify the numer-
ical implementation of the method, reduce the computing
time, and minimize the risks of catastrophic cancellations
resulting in loss of precision, which then tends to cause
numerical problems for the matrix inversion. These
simplifications are particularly spectacular in case of
the Q12 and Q21; the computation is reduced to that of
a single integral rather than the sum of up to six of them.
These new expressions will also simplify further analyti-
cal work that uses the EBCM formalism.

The authors are indebted to the Royal Society of New
Zealand for support through a Marsden Grant (W. R. C.
Somerville and E. C. Le Ru) and a Rutherford Discovery
Fellowship (E. C. Le Ru).
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